杏树种子能发芽吗?

小说:杏树种子能发芽吗?作者:伯道王更新时间:2019-05-24字数:61320

“陛下切莫这般思量!”王和阳言道:“陛下雄才大略,定然可以成为一位千古明君,只要我们苦心寻求,总会是能够找到的。”

贴梗海棠一平米种几株?

赤炎荆棘魂师的身体在空中划出一个优美的抛物线,直接落向了场外,被植物学院的一名老师接住,此时他虽然还在晕眩状态,但并没有受到真正的创伤。
‘回一趟长安?’崔圆沉思起来,他慢慢走到窗前,望着窗外片片浓绿,眼中若有所思。

那尊由天魔舍利化成的波旬怒吼一声,一脚踏出,这方天地都在波旬的凶威之下让步了,一脚便踏破了虚妄,来到了雷光之海前面!

十分钟学会Pandas

这是关于Pandas的简短介绍主要面向新用户。你可以参考Cookbook了解更复杂的使用方法

习惯上,我们这样导入:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

创建对象

请参阅数据结构简介部分

通过传递一个列表的值创建一个Series,让Pandas创建一个默认的整数索引:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s
Out[5]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

通过传递的numpy数组创建一个DataFrame,并使用DataFrame索引和标记列:

In [6]: dates = pd.date_range("20130101", periods=6)

In [7]: dates
Out[7]: 
DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03", "2013-01-04",
               "2013-01-05", "2013-01-06"],
              dtype="datetime64[ns]", freq="D")

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list("ABCD"))

In [9]: df
Out[9]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

通过传递可转换成类似序列结构的字典序列来创建DataFrame。

查看不同列的数据类型

In [12]: df2.dtypes
Out[12]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

如果你使用的是IPython,可以使用Tab自动补全列名称(以及公共属性)。以下是将要完成的属性的一个子集:

In [13]: df2.<TAB>
df2.A                  df2.bool
df2.abs                df2.boxplot
df2.add                df2.C
df2.add_prefix         df2.clip
df2.add_suffix         df2.clip_lower
df2.align              df2.clip_upper
df2.all                df2.columns
df2.any                df2.combine
df2.append             df2.combine_first
df2.apply              df2.compound
df2.applymap           df2.consolidate
df2.as_blocks          df2.convert_objects
df2.asfreq             df2.copy
df2.as_matrix          df2.corr
df2.astype             df2.corrwith
df2.at                 df2.count
df2.at_time            df2.cov
df2.axes               df2.cummax
df2.B                  df2.cummin
df2.between_time       df2.cumprod
df2.bfill              df2.cumsum
df2.blocks             df2.D

像你见到的那样,A、B、C、D都是使用Tab自动补全的。E也是如此;为了简洁其它的属性被截断了。

查看数据

请参阅基础部分

查看frame中头部和尾部的行

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

显示索引、行和底层numpy数据

In [16]: df.index
Out[16]: 
DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03", "2013-01-04",
               "2013-01-05", "2013-01-06"],
              dtype="datetime64[ns]", freq="D")

In [17]: df.columns
Out[17]: Index(["A", "B", "C", "D"], dtype="object")

In [18]: df.values
Out[18]: 
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])

显示您的数据的快速统计摘要

In [19]: df.describe()
Out[19]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706

数据转置

In [20]: df.T
Out[20]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

按轴排序

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

按值排序

In [22]: df.sort_values(by="B")
Out[22]: 
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

选择

请参阅索引文档 索引和选择数据 和 多索引/高级索引

读取

选择一个单独的列,返回一个Series,等同于 df.A

In [23]: df["A"]
Out[23]: 
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

使用[]选择,对行进行切片。

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [25]: df["20130102":"20130104"]
Out[25]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

通过标签选择

详情参阅标签选择

使用标签获取交叉区域

In [26]: df.loc[dates[0]]
Out[26]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

通过标签选择多轴

In [27]: df.loc[:,["A","B"]]
Out[27]: 
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

显示标签切片,包含端点

In [28]: df.loc["20130102":"20130104",["A","B"]]
Out[28]: 
                   A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

降低返回对象维度

In [29]: df.loc["20130102",["A","B"]]
Out[29]: 
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

获取标量值

In [30]: df.loc[dates[0],"A"]
Out[30]: 0.46911229990718628

快速访问标量(同上一方法等价)

In [31]: df.at[dates[0],"A"]
Out[31]: 0.46911229990718628

按位置选择

详情参阅按位置选择

通过传递整数选择位置

In [32]: df.iloc[3]
Out[32]: 
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

通过整数切片,类似于numpy/python

In [33]: df.iloc[3:5,0:2]
Out[33]: 
                   A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

通过列表指定位置,类似于numpy/python样式

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]: 
                   A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

对行切片

In [35]: df.iloc[1:3,:]
Out[35]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

对列切片

In [36]: df.iloc[:,1:3]
Out[36]: 
                   B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

获取指定值

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

快速访问标量(同上一方法等价)

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

布尔索引

使用单列值选择数据。

In [39]: df[df.A > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

从满足布尔条件的DataFrame中选择值。

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

使用isin()方法进行过滤

In [41]: df2 = df.copy()

In [42]: df2["E"] = ["one", "one","two","three","four","three"]

In [43]: df2
Out[43]: 
                   A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three

In [44]: df2[df2["E"].isin(["two","four"])]
Out[44]: 
                   A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

设置

设置一个新列会自动使索引对齐数据

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range("20130102", periods=6))

In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64

In [47]: df["F"] = s1

按标签切片

In [48]: df.at[dates[0],"A"] = 0

按位置设置值

In [49]: df.iat[0,1] = 0

通过numpy数组设置

In [50]: df.loc[:,"D"] = np.array([5] * len(df))

设置结果如下

In [51]: df
Out[51]: 
                   A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059  5  NaN
2013-01-02  1.212112 -0.173215  0.119209  5  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
2013-01-05 -0.424972  0.567020  0.276232  5  4.0
2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

where操作赋值

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]: 
                   A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失数据

Pandas主要使用np.nan来表示缺失数据。默认情况下不包括在计算中。请参阅缺失数据部分

重建索引允许修改/添加/删除指定轴的索引,并返回数据副本。

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"])

In [56]: df1.loc[dates[0]:dates[1],"E"] = 1

In [57]: df1
Out[57]: 
                   A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

删除所有缺少数据的行。

In [58]: df1.dropna(how="any")
Out[58]: 
                   A         B         C  D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

填写缺失的数据行

In [59]: df1.fillna(value=5)
Out[59]: 
                   A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

获取值为nan的布尔值

In [60]: pd.isnull(df1)
Out[60]: 
                A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

运算

请参阅二进制运算的基础部分

统计

运算一般排除丢失的数据。

执行描述性统计

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

在其他轴上执行相同的运算

In [62]: df.mean(1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

运算具有不同维度和需要对齐的对象。此外,Pandas会沿着指定维度运算。

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)

In [64]: s
Out[64]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [65]: df.sub(s, axis="index")
Out[65]: 
                   A         B         C    D    F
2013-01-01       NaN       NaN       NaN  NaN  NaN
2013-01-02       NaN       NaN       NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

应用

将函数应用于数据

In [66]: df.apply(np.cumsum)
Out[66]: 
                   A         B         C   D     F
2013-01-01  0.000000  0.000000 -1.509059   5   NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]: 
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

直方图

详情请请参阅直方图和离散化

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64

In [70]: s.value_counts()
Out[70]: 
4    5
6    2
2    2
1    1
dtype: int64

 

字符串方法

Series在字符串中设置了一组字符串处理方法,可以方便地对数组中每个元素进行操作,如下面代码片段所示。请注意,字符串中的模式匹配默认使用正则表达式。(在某些情况下总是使用它们)。详情请参阅矢量字符串方法。

In [71]: s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])

In [72]: s.str.lower()
Out[72]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

合并

连接

在连接/合并类型操作的情况下,Pandas提供了一些具有用于索引和关系代数的各种函数合并Series、DataFrame和Panel对象的方法

请参阅合并部分

使用concat()把Pandas对象连接:

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

连接

SQL风格合并。请参阅数据库风格连接

In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})

In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})

In [79]: left
Out[79]: 
   key  lval
0  foo     1
1  foo     2

In [80]: right
Out[80]: 
   key  rval
0  foo     4
1  foo     5

In [81]: pd.merge(left, right, on="key")
Out[81]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

 

给出另一个例子:

In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})

In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})

In [84]: left
Out[84]: 
   key  lval
0  foo     1
1  bar     2

In [85]: right
Out[85]: 
   key  rval
0  foo     4
1  bar     5

In [86]: pd.merge(left, right, on="key")
Out[86]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

追加

添加行到DataFrame。请参阅追加

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=["A","B","C","D"])

In [88]: df
Out[88]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)
Out[90]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610

 

分组

"分组"我们指的是涉及一个或多个以下步骤的过程

  • Splitting:根据一些标准将数据分组
  • Applying:将功能独立应用于每个组
  • Combining:将结果合并成数据结构

请参阅分组部分

In [91]: df = pd.DataFrame({"A" : ["foo", "bar", "foo", "bar",
   ....:                           "foo", "bar", "foo", "foo"],
   ....:                    "B" : ["one", "one", "two", "three",
   ....:                           "two", "two", "one", "three"],
   ....:                    "C" : np.random.randn(8),
   ....:                    "D" : np.random.randn(8)})
   ....: 

In [92]: df
Out[92]: 
     A      B         C         D
0  foo    one -1.202872 -0.055224
1  bar    one -1.814470  2.395985
2  foo    two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo    two  1.395433  0.047609
5  bar    two -0.392670 -0.136473
6  foo    one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033

 

分组,然后将sum()函数应用于生成的组。

In [93]: df.groupby("A").sum()
Out[93]: 
            C        D
A                     
bar -2.802588  2.42611
foo  3.146492 -0.63958

按多列分组形成层次索引,然后应用该函数。

In [94]: df.groupby(["A","B"]).sum()
Out[94]: 
                  C         D
A   B                        
bar one   -1.814470  2.395985
    three -0.595447  0.166599
    two   -0.392670 -0.136473
foo one   -1.195665 -0.616981
    three  1.928123 -1.623033
    two    2.414034  1.600434

重塑

请参阅有关分层索引和重塑部分。

In [95]: tuples = list(zip(*[["bar", "bar", "baz", "baz",
   ....:                      "foo", "foo", "qux", "qux"],
   ....:                     ["one", "two", "one", "two",
   ....:                      "one", "two", "one", "two"]]))
   ....: 

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"])

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"])

In [98]: df2 = df[:4]

In [99]: df2
Out[99]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

stack()方法将"压缩"DataFrame列中的一个级别。

In [100]: stacked = df2.stack()

In [101]: stacked
Out[101]: 
first  second   
bar    one     A    0.029399
               B   -0.542108
       two     A    0.282696
               B   -0.087302
baz    one     A   -1.575170
               B    1.771208
       two     A    0.816482
               B    1.100230
dtype: float64

使用"stacked"DataFrame或Series(有一个MultilIndex作为索引)stack()的反向操作是unstack(),它默认情况下解除最后一个级别。

In [102]: stacked.unstack()
Out[102]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

In [103]: stacked.unstack(1)
Out[103]: 
second        one       two
first                      
bar   A  0.029399  0.282696
      B -0.542108 -0.087302
baz   A -1.575170  0.816482
      B  1.771208  1.100230

In [104]: stacked.unstack(0)
Out[104]: 
first          bar       baz
second                      
one    A  0.029399 -1.575170
       B -0.542108  1.771208
two    A  0.282696  0.816482
       B -0.087302  1.100230

数据透视表

请参阅数据透视表部分。

In [105]: df = pd.DataFrame({"A" : ["one", "one", "two", "three"] * 3,
   .....:                    "B" : ["A", "B", "C"] * 4,
   .....:                    "C" : ["foo", "foo", "foo", "bar", "bar", "bar"] * 2,
   .....:                    "D" : np.random.randn(12),
   .....:                    "E" : np.random.randn(12)})
   .....: 

In [106]: df
Out[106]: 
        A  B    C         D         E
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115

我们可以轻松地从这些数据中快速生成数据透视表:

In [107]: pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"])
Out[107]: 
C             bar       foo
A     B                    
one   A -0.773723  1.418757
      B -0.029716 -1.879024
      C -1.146178  0.314665
three A  1.006160       NaN
      B       NaN -1.035018
      C  0.648740       NaN
two   A       NaN  0.100900
      B -1.170653       NaN
      C       NaN  0.536826

时间序列

Pandas具有简单、强大和高效的功能,用于在变频期间执行重采样操作。这在金融应用中非常常见,但是不限于此。请参阅时间序列部分

In [108]: rng = pd.date_range("1/1/2012", periods=100, freq="S")

In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [110]: ts.resample("5Min").sum()
Out[110]: 
2012-01-01    25083
Freq: 5T, dtype: int64

 

时区表示

In [111]: rng = pd.date_range("3/6/2012 00:00", periods=5, freq="D")

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [113]: ts
Out[113]: 
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64

In [114]: ts_utc = ts.tz_localize("UTC")

In [115]: ts_utc
Out[115]: 
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64

转换到另一时区

In [116]: ts_utc.tz_convert("US/Eastern")
Out[116]: 
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64

在时间跨度之间转换

In [117]: rng = pd.date_range("1/1/2012", periods=5, freq="M")

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [119]: ts
Out[119]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64

In [120]: ps = ts.to_period()

In [121]: ps
Out[121]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64

In [122]: ps.to_timestamp()
Out[122]: 
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

在时间和时间戳之间转换,可以使用一些方便的算术函数。在下面例子中:

In [123]: prng = pd.period_range("1990Q1", "2000Q4", freq="Q-NOV")

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [125]: ts.index = (prng.asfreq("M", "e") + 1).asfreq("H", "s") + 9

In [126]: ts.head()
Out[126]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64

明确的

自0.15版本以来,Pandas可以在DataFrame中包含分类数据。有关完整文档,请参阅分类介绍和API文档。

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":["a", "b", "b", "a", "a", "e"]})

将原始数据转换为分类数据。

In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]
Out[129]: 
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

将类别重命名为更有意义的名称

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

重新排列类别并同时添加丢失的类别(Series.cat下的方法返回一个默认的新Series)。

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [132]: df["grade"]
Out[132]: 
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

排序是按类别中的顺序排序的,而不是词法顺序。

In [133]: df.sort_values(by="grade")
Out[133]: 
   id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good

按分类列分组还显示空类别。

In [134]: df.groupby("grade").size()
Out[134]: 
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

编辑:建文龙

发布:2019-05-24 01:30:19

当前文章:http://scycxh.com/2018qfrajzlfdx/index.html

金边黄杨30到40厘米价格是多少? 紫藤在冬天可以安全越冬吗? 珍珠梅耐寒吗? 洒金桃叶珊瑚的价格今年怎么样? 足球场专用草坪有哪些品种? 剪股颖种子什么时候播种? 果岭草能种在屋顶吗? 重庆常见草花品种有哪些?

59960 80953 90973 70868 39037 39103 88433 13501 15287 40052 69748 31541 93904 43834 47100 86662 60667 36599 42767 27466

我要说两句: (0人参与)

发布